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ON THE RANGE OF ACCRETIVE OPERATORS'

BY
MICHAEL G. CRANDALL* AND AMNON PAZY

ABSTRACT

The solvability of the nonlinear operator equation w = x + Bx, where B 1s
accretive in a general Banach space X is studied by means of discrete
approximations In particular, if B is continuous and everywhere defined an
algorithm is given for solving the equation.

Introduction

Let X be a real Banach space and let B: D(BYC X — X be a nonlinear
operator. B is called accretive if

% — x2ll Sl x = x2+ A(Bx, — Bxa)

for A >O, X, X2 € D(B)

If B is accretive, then B is m-accretive if X = R(I+ B), i.e. for every w € X
there is an x € D(B) such that w = x + Bx. One of the first results in the study of
accretive operators was obtained by G. Minty [5] and implied that every
continuous everywhere defined accretive operator in a Hilbert space is m-
accretive. This latter result was extended to general Banach spaces by R. Martin
[4]. The known proofs of Martin’s theorem employ the solvability of the
initial-value problem

fidi:+Au =0
1)
u@=x

where A is continuous and accretive on X, The existence theory for equation (1)
has been generalized to allow cases in which A is neither continuous nor
single-valued. For recent developments see, e.g., Y. Kobayashi [3] and M. Pierre
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[7. 8]. This existence theory is rather technical and complex. The present paper
was motivated by the desire to find a proof of the above mentioned theorem of
Martin which is direct, constructive and which does not rely on the solvability
of (1).

If B is continuous, everywhere defined and accretive we show in Theorem 2 of
Section 1 how to choose numbers a. € (0,1] so that the sequence defined by
Xy o1 = aenXn — (1 — aw) (Bxe — z)) converges to the unique solution x.. of x.+
Bx. = z. (The choice of «,., depends on x; and «, + -+ a.) In fact, our main
results easily adapt to provide elementary proofs (i.e., proofs not relying on (1))
of the strong generalizations of Martin’s theorem obtained in [3] and [7]. In
particular, the perturbation theorem of Webb [9] as generalized by Barbu [1]
follows easily.

The main results are stated in Section 1 and proved in Section 2. Then various
known results are obtained as applications in the final Section 3.

1. The main results

Let B be a mapping from X to the subsets of X which is accretive, i.e.

(.D X = x:+ Ay = y)ll 2 |[x1 — x»

for A >0,y, €Bx, x, € D(B)={x € X: Bx# J}. Given w € X we consider the
solvability of the problem w € R(I + B), i.e. can we find x € X such that
w € x + Bx (equivalently, w —x € Bx). Replacing B by B. where B,x =
Bx —w we reduce to the case w = (.

DerniTiON. A sequence {x, }i -, is admissible for the problem 0 € R(I + B) if
there exist y. € Bx, and numbers A, >0, k = 1,2, such that

B D ko=
1
(1.2)
(i) Z ka+l—xk +hk+1(xk+1+)’k+1)”<°°-
The first result is:

THEOREM 1. Let B be accretive and {x.} be an admissible sequence for
0€ R(I + B). Then

(a) Xx= 'l‘im Xk exists.
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Moreover
b) (+MN)|x—xJ=|x—x-+A(y +x)| for A>0, x€D(B), y€ Bx.

We expect x. of (a) above to solve 0 € x.. + Bx., but cannot in fact state so
without further assumptions on B. (As we will see, (b) is close to the assertion
0 € x. + Bx..) Theorem 1 leaves open the question of existence of admissible
sequences, which also requires further conditions on B (see Theorem 3 and
Proposition 1 below). These questions are resolved for continuous B in the next

result.

THEOREM 2. Let B: D(B)C X — X be continuous and accretive.
(a) Let D(B)= X. Given x,€ X inductively define

th:zﬂnk‘ k:Oﬂlw...

(1.3)
1 hk—‘—l

v
1+ e "

ka:

where n, is the least nonnegative integer n such that

2" 1
(1.4) U B<1+,n X ~159m Bxk>—Bxk

<exp{—(m+h,+ -+ + 1)}

Then {x.} is admissible for 0€ R(I + B).
(b) Let {x.} be admissible for 0 € R(I + B) and D(B) be closed. Then

Xx + Bxk—)Xx"l'_BXx:O
where x. = limy ... Xi.

Remarks. The scheme (1.3), (1.4) gives an algorithm for computing {x, }. Our
proofs will give explicit estimates on |[xc — x.[, but we will not be able to
estimate n, (equivalently, h,) in general and therefore the number of steps
required to achieve a preassigned accuracy. There are many alternatives to (1.3),
(1.4). In particular, we mention that exp{— (h,+ ho+ -+ + h. + 1)} on the right
of (1.4) can be replaced by ¢(h,+ -+ h.) for any decreasing integrable
function ¢: (0,)— (0, ).

If B is not necessarily continuous, we will use the condition

®) o d(R(I+A(I+B)),x)

inf min(1, A) =0 for x&D(B),

where d(C, x) denotes the distance from CC X to x € X.
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THEOREM 3. Let B be accretive and (R) hold. Then:

(a) There is an admissible sequence {x.} for 0€ R(I + B).

(b) 0€ R(I + B) (the closure of R(I + B)). In particular, if B is also closed,
there is a solution x. of 0€ x.+ Bx. to which every admissible sequence
converges.

REMARKS. Suppose we knew that there is a subset D, of D(B) with the
following property: For every € >0 and x, € D, there are finite sequences
{x1, X2, -, xx} C Dy, {hi, -, hn} C(0,%) and y, € Bx, such that 2=3, h, =1
and

N
D k= x F ha(xa+ ya)l<e
=0

Then there will be admissible sequences for 0 € R(I + B), as is easy to see.
Various conditions which imply this property are discussed by M. Pierre [7, 8].
We have singled out (R) here because of its simplicity and the fact that it falls
outside the scope of previous works. In particular, the requirement that
liminf, ;oA "d(R(I + A(I + B)),x)=0 for x € D(B) (which allows use of the
results of Y. Kobayashi [3]) implies (R) but is not implied by it. However, none
of the above mentioned conditions are necessary for the existence of admissible
sequences. We note:

Prorosimion 1. Let B be accretive and 0€ R(I+ B). Then there is an
admissible sequence for 0 € R(I+ B). Conversely, if there is an admissible
sequence for 0 € R(I + B) then 0 is in the closed convex hull of R(I + B).

Remarks. (1) For exposition’s sake we have discussed the problem 0 €&
R(I + B) where B is accretive. All our results adapt at once to the case
0&€ R(A) when A — wl is accretive for some w > 0.

(ii) It would be nice to know if the existence of an admissible sequence for
0€ R(I + B) implies 0 € R(I + B).

Section 2

We begin with three lemmas which contain the heart of the proofs of Theorem
1-3. Lemmas 1 and 2 (when A =0) are variations of estimates used by
Kobayashi [3], (see also [2]). Theorems 1 and 3 are proved following the lemmas.
The proof of Theorem 2, which is closely related to that of Theorem 3, is given
next. The section ends with the proof of Proposition 1.

Hereafter B is accretive, x, € X, k =0,1,--- and y. € Bx,, k =1,2,--- are
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regarded as given. Let {h. }i -, be a sequence of real positive numbers and define
ze€ X for k=1,2,--- by

(21) xk+|“xk+hk+.(xk”+ykq)=h“.qu k=0,l,2,--'.

LemMma 1. Leti>[>0 and (2.1) hold. Then

(2:2) e —xl=ballx +yd+ 2 Azl

where b, = min(1, ..., hy).
Proor. From (2.1) we have
heallzial+ ol + y [ Z 100+ hea) (e — ) = (6 = %) + B (e — y) |
Z (1 + A ) (XKier = x0) + BB = YOI = [ — x|
zZ (1+ ) xen — x| =l — x|

where the first and second estimates are the triangle inequality and the third
follows from the accretiveness of B. Thus

2.3) e —xl =0+ o) e = i+ (T + he) ' (xc+ yll+ L zead)

and iterating this from k=/to k=i-1,

e =xl= S T1+h) h(x+yl+]z)

=i+l m=y
(2.4)
=Mlx+yl+ 3 hlzl.
1=i+1
where
@.5) M= 2 (1+ha) "= 2 hy
p=l+l m=y p=1i+
Now
(2.6) M., is nondecreasing in iz /+land 0=M,; =1
since
— 1 hl+l
Meu=arny Mt 1o,

is a convex combination of 1 and M,, Thus (2.2) follows from (2.4) because
M, = b, by (2.5) and (2.6).
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Lemma 2. Let (2.1) be satisfied, A,B 20, >0 and assume that

v -xlsA+B X h+ > hzl
k=1+1 k

T+
foriz1l Then forizj=1

en lu-xl=a 1 +h) ' +B 3 bt 3 hal+ 3 ozl

=I+1

ProoF. Set a,, = ||x, — x,|. From the accretiveness of B and (2.1) we obtain
(see, e.g. [2] lemma 1.7 and remark 4.1) the following recursion relation:

h,+h h h
L A R RS S !
8) aw =255 2 Ui @on + 2+ g (@ bz D),

By assumption, (2.7) holds if j = [ and clearly it holds if i = j. Thus it suffices to
show that if i > j = [ and the desired estimate (2.7) holds for a,_,, and a,, , then
it holds for a.,. However, this follows readily from (2.8).

LemMA 3. Let (2.1) hold and 25 hi||zi || <. Then lim._... x, exists.

Proor. There are two cases. First we assume 27_, h, ==. By Lemma 1
Ix = x=llx+yl+ 2 hdal for izl
k=1+1

so by Lemma 2 (with A =|/x, + y,|, B=0)
] i

!
@9 Ix=xl=l+yl I] a+hy'+ 3 hlal+ 3 bzl

k=1+1

for 1= j =1 Since Zi_ b =00, Tli_;.,(1+ h,)"' = 0. Thus by (2.9)

(2.10) limsup [x, — % [=2 Az
t+1

1)

for all L Letting I -~ we find that {x.} is a Cauchy sequence and hence
convergent.
The other possibility is that 2., b <. This time we use the assertion

Ix —xl=le+pl 2 bt 2 bzl izl
k=1+1 k=1+1

from Lemma 1. Now Lemma 2 (with A =0, B =|x, + y,||) implies

] 3 U
I - xl=latwl 3 ht 3 helals 3 bzl
=+ =i+

k=1+1
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Letting i,j — = we again find (2.10) (since X h <), and {x.} is Cauchy as
before.

Proor oF THEOREM 1. Part (a) is an immediate consequence of Lemma 3. To
obtain part (b) let limy—.. xx = x. and y € Bx. Rewriting (2.1) we have

(2‘11) Ye+r1 =y = h;ll(xk — Xkt hk+l(zk+l — Xk+1 y))
Since B is accretive
(2.12) [Xeri—x [ E[lxei—x + (e —y)|| for u>0.

Substitute (2.11) in (2.12), take @ = Ahiai(A + hisy + Ahy.,)™! and multiply by
ATYA + B+ AR to find:

(1 + hk+| + A_I hk4|)” Xk+| - X ”é ||x - xk - hk+| 2k+l+ hk+](x + y)
+ A_l hk+|(x - Xk+|)“§l|x = Xk [|+ hlu—l” Zk+l”+ /\_l hk+l”(x - xk+l)+ )\(x + y)”
and therefore

(1 + hkﬂ)[[x - Xk 4y

=Slx — x4+ A reallx = xe + A(x + )|
(2.13)
_HX _xk+1”)+ hku”an”-

Iterating this inequality from k =1 to k =i —1 yields

Ix=xh=lx=xl [T (+h)"

(2.14) 27 S (T a+ha)?) llx = + 2G4 )= x = x )

j=1+1 m=}
'

P S <m[]’ a+ hm)"> h 2.

p=t+1

Since 2., h, = =, the first term on the right of (2.14) tends to zero as i —«. The
third term on the right also tends to zero as i — © by the dominated convergence
theorem (each term individually tends to 0 and {h |z} is a dominating
summable sequence). Finally, by (2.6) and

lim (1x = x + A(x + ) =llx —x ) =lx =+ A0+ y)l - llx - x|

we obtain upon letting i — % in (2.14) that

e —xf= A7 (x = xe+ A+ )l = s — xal)
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or, after rearranging,
A+ A)[x = x| =[x = %o+ A(x + y)]
which is the desired inequality.

ProoF oF THEOREM 3. We begin by showing that if B is accretive and
satisfies (R) then there is an admissible sequence for 0 € R(I + B).

For x El-)(—B—) and £ >0 let A(x, ¢) be the set of those numbers A >0 for
which there exists x, and y, € Bx, such that

lxs + A0+ y) = x[[<x(A)e

where x (A) =min(1, A) for A € (0,=]. A(x, £) is nonempty by condition (R), and
we define A(x,e)=supA(x,e). Let xo€ D(B) be arbitrary and suppose
X1, X2, ", Xk—1 and hy, ho, -« -, by have been chosen. Set

(2.15) £k =exp(—k2_1 h,—l)

)=1

and choose h, >0, xi, y« € Bx. so that

XGA (X1, £)) = by <0
(2.16) {

2 = Xi-1 + A (e + yi) 1< x (B e
In this way we get infinite sequences {h.}, {x.}, {y«}. Now by (2.16), (2.15) and
with z, as in (2.1),

(2.17) ’(21 h |z < 21 x (h)er gL e'ds < .

Thus, if 27 by ==, {x,} is admissible and we are done. Let . = h,+ - -+ h,.
Assuming lim_.. 0w = 0. <® we will reach a contradiction by use of a now
standard idea of Nagumo [6], and thus complete the proof of (a). By Lemma 3,
Xo = limi_. x, exists. By (R) there exists A, € (0,%), X, § € B such that
”.f — Xot Ao(y + i)“ < CV(am+l)X(Ao).
Then
1% = xe-1+ Ao(F + B < e ™Dy (Ao) = x (Ao)es

for all k large enough. Hence, by (2.16), 2k, = x(A,) for large k, contradicting
[0 4% =h1+"'+hk—)0'@<°°.
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To prove part (b), we use (R) to assert the existence of sequences A, >0,
u, € D(B), v, € Bu, such that

U — X
_+ ul + A
N )

(2.18) l—»o.

By Theorem 1(b) we also have

U — Xo
Al

U — X
A

=

(2.19) 1+ A) +(u+0) .

Combining (2.18) and (2.19) we conclude A, (4 — x.)— 0 as well as 4, — x., and
subsequently, from (2.18), u, + v, 0. Thus0€E R(I+ B)and0€ R(I + B) if B
is closed.

ProoF oF THEOREM 2. We first show that (1.3), (1.4) defines an admissible
sequence. With y. = Bx, we have, by (1.3), (1.4)

E ” X1 — X + hk+1(xk+1 + )’k+1)“ = E hk+1”Bxk+1 — Bx, “
k=0 k=0

) k
= h..exp (—2 h,—1)§ 1.
k=0 =1

Thus it is sufficient to show Z¢_o h, = . Suppose o = h,+ -+ h, —> g. <>,
Then x. converges to a limit x. by Lemma 3. Since B is continuous there is an
integer n such that

“B( 2 1 Bxx>—me

T2 " 137 <exp(— o.—1).

Then also

I (25 0L ) -

1+2,,xk—1+2,, <exp(—(h+- + h)—-1)

for large k and therefore ni = n for large k. But then oo = h,+---+ h, > o by
(1.3), a contradiction.

Let {x.} be an admissible sequence for 0 € R(I + B) and (2.1) hold with
Si-ihlzi||<o. Then xi — x. and summing (2.1) from k=m to k=n-1
yields

= h, X — X 1 =
m n
(x, +y)= + z hizy,
il O = O O = On  On = Op o1

where o, = b+ - - -+ h. The right hand side above tends to zero as n, m -
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subject to o, — o, = 1, while the left hand side consists of convex combinations
of x, + y,. Thus if x, + y, has a limit as j — %, it must be zero. If B is continuous
and D(B) is closed, x.€ D(B) and x, + Bx, = x. + Bx., proving (b).

ProOF ofF ProposiTioN 1. Let 0€ R(I + B). Let {a:} be an arbitrary sum-
mable sequence of positive numbers and {h.} a sequence of positive numbers
satisfying 7., hy = », 2¢_, axhy <». Choose x, € D(B), y. € Bx. such that
| x + yi | < aw. Then we claim {x.} is an admissible sequence for 0 € R(I + B)
and we may use {h.} in (1.2). Indeed

”-xk+l = Xk ” = “xk+1 — X + Yoo~ Yk ” = “xk+] + Yk+1” + ”xk + Y ” = ot oai

SO

z lek+1 =X+ hea(xea + )’k+1)“ = 2 ||xk+l - Xk ” + hk+1”xk+l + }’k+1“
k=1 k=1

fIA

22 ak+ 2 akhk < w,
k=1 k

=1

Thus {x,} is admissible.

In the proof of Theorem 2 we showed that certain convex combinations of
x, +y, converged to 0 if (1.2) holds, so 0 is in the closed convex hull of R(I + B)
if there is an admissible sequence. This completes the proof.

REMARKs. From the proof of Proposition 1 we see that if 0 € R(I + B) then
there exist admissible sequences with arbitrary associated sequences {h,}
satisfying = i, = oo, It is worth noting that if (1.2) holds and inf, by >0 then
0€ R(I + B) for

hy (xk + )’k) = (xkfl =Xt hk+l(xk+1 + )’k+1))— (xk—l - xk)

and the first term on the right tends to 0 by (3) (ii) and the second does by
Theorem 1, 50 xi + y« — 0. One can also show that x, + y, — 0if 25, ||z, || < ee.

3. Applications

In this section we deduce two known general theorems on accretive sets in
Banach space as simple consequences of our results. We note that the previously
known proofs of these theorems were all dependent on the existence of a
solution to the initial value problem (1).

We start by introducing the following conditions:

(Ry) liminf A 7'dist(R(I +AA);x —Ay)=0 Vx&€D(A), y€EX

A—0"
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Note that it is sufficient for (R,) to hold only for every y in a dense subset of X in
order for it to hold for every y € X.

LemMa 4. Let A be accretive and satisfy (R). If P:D(A)CX—> X is
continuous, then A + P satisfies (R)).

Proor. If A satisfies (R,) then for every y € X there are sequences A, —0
and y, € Ax, such that

3.1 AT x, Ay, —(x — Ay —APx))—>0 as i—®.
But
A A AP, - (x —AY) = A (6 Ay, — (x — Ay — APx))+ Px, — Px.

In order to prove that A + P satisfies (R,) it is therefore sufficient to show that
x,— x as i >, from the accretiveness of A we have

lx.—u||=]x —u+A(y. —v)| for vEAu

and from (3.1) we then have
limsup [|x, — u||=limsup [|x —u = A(y + Px + v)[|=[lx —u]

for all u € D(A) and thus x, = x.

Let z € X be arbitrary. Taking P = I — z in the previous lemma, it follows
that A, = A + I — z satisfies condition (R,) and hence also (R) of Section 1 and
therefore by Theorem 3 we have:

Tueorem (Y. Kobayashi [3]). Let A be accretive and satisfy (R,). Then A
(the closure of A) is m-accretive.

We conclude with the following general perturbation theorem.

TueoreM (Y. Kobayashi [3]). Let A be accretive and P: D(A)C X — X be
continuous. If A + P is accretive, then it is m-accretive if and only if A is
m-accretive.

Proor. Let A be m-accretive then A is closed and satisfies (R;). Therefore,
by Lemma 4, A + P satisfies (R,). Since, by the continuity of P, A + P is closed
and by assumption it is accretive, it follows from the previous theorem that
A + P is m-accretive. If A + P is m-accretive one has that A =(A +P)— P is
as well by the above.

The last theorem is a considerable generalization of the theorem of R. Martin
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which was stated in the introduction. Indeed Martin’s theorem is obtained by
taking A =0 on X. G. Webb [9] proved the above perturbation result assuming
that A was linear m-accretive with D(A)= X. Subsequently V. Barbu [1]
generalized Webb’s result to the case where A was a general m-accretive

operator and P: X — X was continuous. Finally Y. Kobayashi [3] proved the
above theorem.

REFERENCES

1. V. Barbu, Continuous perturbations of nonlinear m-accretive operators in Banach space, Boll.
Un. Mat. Ital. 6 (1972), 270-278.

2. M. G. Crandall and L. C. Evans, On the relation of the operator (3/3t)+ (3/3s) to evolution
governed by accretive operators, Israel J. Math. 21 (1975), 261-278.

3. Y. Kobayashi, Difference approximation of Cauchy problems for quasi-dissipative operators
and generation of nonlinear semigroups, J. Math. Soc. Japan 27 (1975), 640-665.

4. R. H. Martin, A global existence theorem for autonomous differential equations in Banach
space, Proc. Amer. Math. Soc. 26 (1970), 307-314.

5. G. H. Minty, Monotone (nonlinear) operators in a Hilbert space, Duke Math. J. 29 (1962),
341-346.

6. M. Nagumo, Uber die lage der Integralkurven gewdhnlicher Differentialgleichungen, Proc.
Phys.—Math. Soc. Japan 24 (1942), 551-559.

7. M. Pierre, Un théoréme général de génération de semi-groupes nonlinéaires, Israel J. Math. 23
(1976), 189-199.

8. M. Pierre, Génération et perturbation de semi-groupes de contractions nonlinéaires, Thése de
Docteur de 3¢é cycle, Université de Paris VI, 1976.

9. G. F. Webb, Nonlinear perturbations of linear accretive operators in Banach spaces, J.
Functional Analysis 10 (1972), 191-203.

MATHEMATICS RESEARCH CENTER
UNIVERSITY OF WISCONSIN — MADISON



