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O N  T H E  R A N G E  OF A C C R E T I V E  O P E R A T O R S *  

BY 

MICHAEL O. CRANDALL: AND AMNON PAZY 

ABSTRACT 

The solvability of lhe nonlinear operator equation w = x + Bx, where B Is 
accretive in a general Banach space X is studied by means of discrete 
approximations In particular, if B is continuous and everywhere defined an 
algorithm is given for solving the equation. 

Introduction 

Let  X be  a real Banach  space and let B : D ( B ) C _ X - - - ~ X  be a nonl inear  

opera tor .  B is called accretive if 

ltx,-x=ll~llx,-x=+,t(Bx,-Bx~)ll for ;~>0, x,,x=~O(B). 

If B is accretive,  then B is m-accretive if X = R ( I +  B),  i.e. for every w E X 

there is an x ~ D ( B )  such that w = x + Bx. One  of the first results in the study of 

accretive opera tors  was obta ined  by G. Minty [5] and implied that every 

con t inuous  everywhere  defined accretive ope ra to r  in a Hilbert  space is m-  

accretive. This latter result was extended to general  Banach spaces by R. Mart in 

[4], The  known proofs  of Mart in ' s  t heorem employ the solvability of the 

initial-value problem 

faU+Au =0 

0) t at 
u (0) = x 

where  A is con t inuous  and accretive on X. T h e  existence theory for  equat ion  (1) 

has been general ized to allow cases in which A is nei ther  con t inuous  nor  

single-valued. For  recent  deve lopments  see, e.g., Y. Kobayash i  [3] and M. Pierre 
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[7, 8]. This existence theory is rather technical and complex. The present paper  

was motivated by the desire to find a proof of the above ment ioned theorem of 

Martin which is direct, constructive and which does not rely on the solvability 

of (1). 
If B is continuous, everywhere defined and accretive we show in Theorem 2 of 

Section 1 how to choose numbers  ~k E (0, 1] so that the sequence defined by 

xk~, = ak*lXk - - ( i -  ak+~)(Bxk - -Z )  converges to the unique solution x~ of x~+ 

Bx~ = z. (The choice of o~.~ depends on xk and a, + -- �9 + ak.) In fact, our  main 

results easily adapt to provide elementary proofs (i.e., proofs not relying on (1)) 

of the strong generalizations of Martin 's theorem obtained in [3] and [7]. In 

particular, the perturbation theorem of Webb [9] as generalized by Barbu [1] 

follows easily. 

The main results are stated in Section 1 and proved in Section 2. Then various 

known results are obtained as applications in the final Section 3. 

1. The main results 

Let B be a mapping from X to the subsets of X which is accretive, i.e. 

( l . l )  I I x , -  x ~ + , ~ ( y , -  y2)ll -> II x ' -  XEt[ 

for A > 0, y, E Bx,, x, ~_ D ( B )  = {x if_ X :  B x / Q } .  Given w E X we consider the 

solvability of the problem w ft. R ( I + B ) ,  i.e. can we find x ~ X  such that 

w c=_ x + Bx (equivalently, w - x if_ Bx) .  Replacing B by Bw where Bwx = 

Bx - w we reduce to the case w = 0. 

DEFINITION. A sequence {xk }~=o is admissible for the problem 0 E R (I  + B)  if 

there exist yk ~ Bx~ and numbers hk > 0 ,  k = 1 , 2 , - . .  such that 

(1.2) 

(i) 2 hk = m, 
1 

(ii) 2 ]lXk+,-- xk + hk+a(Xk+, + yk§ ~. 
I 

The first result is: 

THEOREM 1. Let B be accretive and {xk} be an admissible sequence for 

OE R ( I  + B) .  Then 

(a) x~ = lim xk exists. 
k ~  
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Moreover 

(b) ( l + h ) [ [ x - x ~ [ l < = l l x - x ~ + h ( y + x ) l l  for h > 0 ,  x E D ( B ) ,  y E B x .  

We expect x~ of (a) above to solve 0 E x~+ Bx~, but cannot in fact state so 

without further assumptions on B. (As we will see, (b) is close to the assertion 

0 E x~ + Bx~.) Theorem 1 leaves open the question of existence of admissible 

sequences, which also requires further conditions on B (see Theorem 3 and 

Proposition 1 below). These questions are resolved for continuous B in the next 

result. 

THEOREM 2. Let B : D ( B  ) C_ X ~ X be continuous and accretive. 

(a) Let D ( B ) =  X. Given x . E  X inductively define 

(1.3) 

hk+, = 2 % 

1 
x~+, 1 + hk+l 

k = 0 , 1 , " "  

hk§ 
- -  xk  - -  B x ~ ,  k = 0 , 1 , " "  

1+ hi§ 

where nk is the least nonnegative integer n such that 

2" 1 ) 
(1.4) B ~ X k - l + 2  ~ B x ~  - B x ,  < exp{- (h, + h 2 + " "  + hk + I)}. 

Then {xk} is admissible for O E R ( I  + B).  

(b) Let {xk} be admissible for 0 ~ R ( I  + B )  and D ( B )  be closed. Then 

x~ + Bxk --* x~ + Bx~ = 0 

where x~ = l imk~ xk. 

REMARKS. The scheme (1.3), (1.4) gives an algorithm for computing {x~ }. Our 

proofs will give explicit estimates on I[xk-x~ll, but we will not be able to 

estimate nk (equivalently, hk) in general and therefore the number of steps 

required to achieve a preassigned accuracy. There are many alternatives to (1.3), 

(1.4). In particular, we mention that e x p { - ( h i +  h 2 + " "  + hk + 1)} on the right 

of (1.4) can be replaced by 0 ( h i + " ' +  hk) for any decreasing integrable 

function tp: (0, ~)---~ (0, 2). 

If B is not necessarily continuous, we will use the condition 

d ( R ( I + h ( I + B ) ) , x )  
(R) inf = 0  for x E D ( B ) ,  

~>o rain(l, A) 

where d(C, x)  denotes the distance from C _C X to x E X. 
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THEOREM 3. Let B be accretive and (R) hold. Then: 

(a) There is an admissible sequence {xk} for 0 E R( I  + B). 

(b) 0 @ R (I + B) (the closure of R (I + B)). In particular, if B is also closed, 

there is a solution x~ of O E x~+ Bx~ to which every admissible sequence 

converges. 

REMARKS. Suppose we knew that there is a subset Do of D(B)  with the 

following property: For every e > 0 and xoE Do there are finite sequences 

{x,,x2," �9 ",xN}C Do, {h, , . .  �9 hN}C(0,~ and y, E Bx, such that 2 =  Y~,=, h, ~ 1 

and 

N 

Z IIx,+,-x, +h,.,(X,.l+y,+,)ll<E. 
I - o  

Then there will be admissible sequences for 0 ~  R ( I +  B), as is easy to see. 

Various conditions which imply this property are discussed by M. Pierre [7, 8]. 

We have singled out (R) here because of its simplicity and the fact that it falls 

outside the scope of previous works. In particular, the requirement that 

lim inf, ~o A 'd(R (I + A (I + B)), x ) =  0 for x E D(B)  (which allows use of the 

results of Y. Kobayashi [3]) implies (R) but is not implied by it. However,  none 

of the above mentioned conditions are necessary for the existence of admissible 

sequences. We note: 

PROPOSITION 1. Let B be accretive and O~ R( I  + B). Then there is an 

admissible sequence for O E R ( I + B ) .  Conversely, if there is an admissible 

sequence for 0 @ R( I  + B) then 0 is in the closed convex hull of R ( I  + B). 

REMARKS. (i) For exposition's sake we have discussed the problem 0 E  

R ( I + B )  where B is accretive. All our results adapt at once to the case 

0 E R (A)  when A - o~I is accretive for some o) > 0. 

(ii) It would be nice to know if the existence of an admissible sequence for 

0 E R ( I + B )  i m p l i e s 0 ~ R ( I + B ) .  

Section 2 

We begin with three lemmas which contain the heart of the proofs of Theorem 

1-3. Lemmas 1 and 2 (when A = 0 )  are variations of estimates used by 

Kobayashi [3], (see also [2]). Theorems 1 and 3 are proved following the lemmas. 

The proof of Theorem 2, which is closely related to that of Theorem 3, is given 

next. The section ends with the proof of Proposition 1. 

Hereaf ter  B is accretive, xk E X, k = 0, 1 , . . .  and yk E Bxk, k = 1 , 2 , . . .  are 
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regarded as given. Let {hk }~-1 be a sequence of real positive numbers  and define 

zk ~ X for k = 1 , 2 , . . .  by 

(2.1) X k , , - - x k + h k . , ( X k ~ , + y ~ . ~ ) = h k . , Z k ~  k = 0 , 1 , 2 ,  " ' ' .  

LEMMA 1. Let i > l >O and (2.1) hold. Then 

(2.2) JIx , -x~l l<=b, . , l lx ,+y,N+ ~ h~llz~ll 
k - l + l  

where b,,, = min( l ,2~=, . l  hk). 

PROOF. From (2.1) we have 

h~+,ilz~-,ll+ h~.,llx, + y, II -> I1(1 + h~ . , ) ( xk+ , -  x , ) -  (xk - x, )+  hk . , (yJ , . , -  Y,)[i 

_-> It(1 + hk . , ) (Xk. , -  X,) + h~+~(yk+~- y,)I1- llxk - x, 1I 

>=(l + hk.dllx~+,- x, Tl-IIx~- x, ll 

where the first and second estimates are the triangle inequality and the third 

follows from the accretiveness of B. Thus 

(2.3) I[xk. , -  x , l / ~ ( l  + hk+,) ~llxk - x ,  ll+ hk+,(1 + hk. , )  '([Jx, + y,l[+llz~+,ll). 

and iterating this from k = l to k = i - 1, 

IIx.- x, rl <- ~ [-I (l + hm) 'h,(llx, + Y, ll+[[z, ll) 
] / + 1  r n -  I 

(2.4) 

<=M,.,IIx,+y, FI+ ~ h, llz, ll, 
1=1+1 

where 

(2.5) 

Now 

(2.6) 

since 

M,.~= 2 l~I (l+hm)lh,<= 2 h,. 
i = l ~ l  rn=  1 1 = / + 1  

M j  is nondecreasing in i -_> 1 + 1 and 0 ==- M~.~ _-< 1 

l h,+l 
M,+,., - (1 + h,+,) M,., +1  + h,+------~ 

is a convex combinat ion of 1 

M,., <= b,., by (2.5) and (2.6). 

and M,.~. Thus (2.2) follows from (2.4) because 



240 M . G .  CRANDALL AND A PAZY Israel J. Math 

LEMMA 2. Let (2.1) be satisfied, A , B  >-0, l > 0  and assume that 

II x, - x, ll <= Z § B ~ h~ + 2 hkllz~ll 
k = l + l  k = / + l  

for i >~ l. Then for i >= j ~ l 

(2.7) ]Ix, - x, It =< A 12I 
k = 1 + 1  

( l + h k ) ' + B  2 hk+ 2 h~tfz, ll§ ~ h~llz~f[. 
k = / + l  k = l + l  k = / + l  

PROOF. Set a,, = IIx, - x, II. From the accretiveness of B and (2.1) we obtain 

(see, e.g. [2] lemma 1.7 and remark  4.1) the following recursion relation: 

( + h  ) 
h, + h, ~ (a ,_ , ,  + h, II z, II) (a,,, , + h, II z, II) (2.8) a,, = h, + h, + h,h, h, + h, h, + h, " 

By assumption,  (2.7) holds if f = l and clearly it holds if i = j. Thus  it suffices to 

show that if i > j  => l and the desired est imate (2.7) holds for  a, 1., and a,., , then 

it holds for a,,. However ,  this follows readily from (2.8). 

LEMMA 3. Let (2.1) hold and Z~=, hk IIz~ II < ~. Then limk_~ xk exists. 

PROOF. There  are two cases. First we assume Z~=o hk = ~c. By L e m m a  1 

IIx,-x, rf<=llx,+y,[[+ ~ h~llzkll f o r  i>=l, 
k = l + l  

so by Lemma 2 (with A = II x, + y, II, B = 0) 

(2.9) I Ix , -x ,  ll<=llx,+y, II [-I ( l + h k ) ' +  
k = l + l  

h~llzklJ+ ~ h, ffz,[[ 
k = l + l  k = l + l  

for  z_->j~ l .  Since x'~=~hk = o o  FI~=~+,(l+hk) ~=0.  Thus by (2.9) 

( 2 . 1 0 )  lim sup tl x, - x, II =< 2 ~ h~ II z~ II 

for  all I. Let t ing l---,zc we find that {xk} is a Cauchy sequence  and hence 

convergent .  

The  o ther  possibility is that Z2=. hk < 7:. This time we use the assertion 

Nx,-x, ll<-llx,+y,H 2 hk+ 2 hkllz~ll i>=l, 
k = 1 + 1  k = l + l  

from L e m m a  1. Now L e m m a  2 (with A = 0, B = IIx, + y, 13 implies 

Ilx,-x, ll<-_llx,+y, ll ~ hk + 2 h~[lz~ll+ ~ hkllz~ll. 
k = / + l  k = l + l  k = / + l  
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Lett ing i , j - - - , ~  we again find (2.10) (since Z h k  < ~ ) ,  and {xk} is Cauchy as 

before. 

PROOF OF THEOREM 1. Part (a) is an immediate  consequence of L e m m a  3. To 

obtain part (b) let iimk--=Xk = X~ and y C B x .  Rewriting (2.1) we have 

-1  
( 2 . 1 1 )  yk+~- y = hk+, (Xk  -- Xk~-! § h k + l ( Z k + , -  Xk+l -- y ) ) .  

Since B is accretive 

( 2 . 1 2 )  [[x.+,-xll<=llxk+,-x+~(y.+,-Y)ll for p . > 0 .  

Substitute (2.11) in (2.12), take /.t = Ahk.,(A + hk+,+ Ahk+,) -l and multiply by 

A-t(A + hk+~+ Ahk+t) to find: 

( l + h ~ + , +  A - ' h ~ + , ) [ [ x ~ + , - x L l < - _ l l x - x ~ - - h k + , Z k + , + h k + , ( x  + y )  

+ A-' hk+,(X - x~+,)[[ =< IIx - xk [I + hk§ zk+,ll + A-' hk.,ll(X - xk+,)+ A(x + y)ll 

and therefore 

(1 + hk+,)[[X - x~+, If --< [Ix - Xk II + A -thk . , ( t lx  - x~+, + A (x  + Y)II 

(2.13) 

- tl x - x~ + , ll) + hk . , ll z~ . , ll. 

Iterating this inequali ty from k = l to k = i - 1 yields 

IIx- x, ll<=llx-x, II (-I ( l + h , ) - '  
1=1+1 

(2.14) + 1 - '  ~ (l"zI ( l + h , , , ) ' 3  h , ( l l x - x , + A ( x +  Y ) l l - I I x  
I=1+1 \ m = l  / 

+ ~ (IZI (1+ i r a ) ' ) h ,  llz, ll. 
1~1-~1 m = /  

Since 2;7=j hj = ~, the first term on the right of (2.14) tends to zero as i ---* ~. The 

third term on the right also tends to zero as i --, ~ by the dominated  convergence 

theorem (each term individually tends to 0 and {h, llz, ll} is a dominat ing 

summable  sequence). Finally, by (2.6) and 

l im (l[x - x, + A(x  + Y)II - [ Ix  - x, II)= IIx - x = +  X(x + Y)II - I Ix  - x~ll 

we obtain upon letting i ~  ~ in (2.14) that 

tl x - x~ll --< .~-'(1t x - x~ + A (x  § y) l I  - II x - x~ll)  
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or, after rearranging, 

(1 + )t)llx - x~ll----IIx - x . +  ) t ( x  + y) l l  

which is the desired inequality. 

PROOF OF THEOREM 3. We begin by showing that if B is accretive and 

satisfies (R) then there is an admissible sequence for 0 E R ( I  + B). 

For x E D ( B )  and e > 0  let A(x ,e)  be the set of those numbers )t > 0  for 

which there exists x, and y, E Bx, such that 

IIx~ + )t(x~ + y , ) -  x II < x()t)~ 

where X()t) = min(1, )t) for )t E (0, ~]. A(x, e) is nonempty by condition (R), and 

we define ) t (x ,e)=supA(x,e) .  Let x o E D ( B )  be arbitrary and suppose 

xl, x2 , "  ", xk-i and hi, h2 , "  ", hk-1 have been chosen. Set 

(2.15) e k : e x p  - h i - 1  

and choose hk > O, Xk, yk E BXk SO that 

[ x(�89 (x~ ,, ~ ) )  _-< h~ < 
(2. 16) ) 

l l lx~  - x~_, + h~(x~ + y~)[[ < x ( h , ) ~ , .  

In this way we get infinite sequences {hE}, {Xk}, {y~}. Now by (2.16), (2.15) and 

with zk as in (2.1), 

fo (2.17) hkllzkll< x(h~)ek <= e-'ds < ~. 
k = l  k = l  

Thus, if 2Thk = ~, {xk} is admissible and we are done. Let m = h~+ . - - +  hk. 

Assuming l i m k ~ r ~  = o'| < ~ we will reach a contradiction by use of a now 

standard idea of Nagumo [6], and thus complete the proof of (a). By Lemma 3, 

x~ = lim~| xk exists. By (R) there exists )to E (0, ~), i ,  .~ E B i  such that 

Then 

I1.~ - x| )t0()7 + x)ll < e-'~~ 

II.~ -- Xk-, § A0(y 4- "~')11 < e-(~k-l+l)X(Ao) = )(()t0)~'k 

for all k large enough. Hence, by (2.16), 2hk ---> )(()to) for large k, contradicting 

O'k = h i+  """  nt- hk "-~ o ' ~ ' ~  ~ .  
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T o  p rove  par t  (b), we use (R) to assert  the exis tence of sequences  L > 0, 

u, E D(B) ,  v, E Bu, such that  

J U , - X ~  -'-~ 0.  (2.18) - - - Z -  + (u, + v,) 

By T h e o r e m  l(b)  we also have  

U, - - X ~  ~ U , - - X ~  
(2.19) ( I + A , )  ~ ~ + ( u , + v , )  . 

Combin ing  (2.18) and  (2.19) we conclude  A il(u, - x~)----~ 0 as well as u, ~ x| and  

subsequent ly ,  f rom (2.18), u, + v, ~ O. Thus  0 E R (I  + B )  and 0 E R ( I  + B )  if B 

is closed. 

PROOF OF THEOREM 2. We  first show that  (1.3), (1.4) defines an admiss ible  

sequence.  With yk = Bx~ we have,  by (1.3), (1.4) 

IIx~+,- xk 4r hk+l(Xk+, q- Yk+,)[I---- 2 hk+,llnxk+l- BXkl[ 
k =o k =0 

=< hk+lexp - h I - 1  -<_1. 
k =0 / =1 

Thus  it is sufficient to show 5".~=o h, = ~. Suppose  o'k = h~ + �9 �9 �9 + hk ~ o-| < ~. 

Then  xk converges  to a limit x~ by L e m m a  3. Since B is con t inuous  there  is an 

in teger  n such that  

F( t B ~ - - ~ - ~ X ~ - l + 2 ~ B x ~  - B x ~  c r y - l ) .  

Then  also 

2 ~ 1 
B ~ x~ - 1 + 2-----z B x k ) -  Bxk t < e x p ( - ( h , + . . . +  h k ) -  1) 

for  large k and the re fore  nk -< n for  large k. But  then cr~ = h i  + �9 �9 �9 + hk --~ ~ by 

(1.3), a contradic t ion.  

Let  {x~} be an admissible  sequence  for  0 E R ( I + B )  and (2.1) hold with 

E~_ ,hk l lZk[ [<~ .  Then  x k ~ x ~  and summing  (2.1) f rom k = m  to k = n - 1  

yields 

h ____!__1 X,n Xn ~_~ "'l (x, + y,) t- ~_~ hkZk, 
i~m+l orM -- O'm O'n -- O'm O'n -- O'm /=m+l 

where  ~ = h~ + . - - +  hr T h e  right hand  side a b o v e  tends  to zero  as n, m--+oo 
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subject to on - o',, => 1, while the left hand side consists of convex combinations 

of x~ + yj. Thus if x~ + yj has a limit as j --> ~, it must be zero. If B is continuous 

and D (B) is closed, x~ E D (B) and x~ + Bx~ ~ x~ + Bx~, proving (b). 

PROOF OF PROPOSITION 1. Let 0 E R ( I  + B). Let {a~} be an arbitrary sum- 

mable sequence of positive numbers and {hk} a sequence of positive numbers 

satisfying E ~  h~ = ~, E ~  akhk < ~. Choose x~ E D(B) ,  yk E Bxk such that 

IIx  § II < Then we claim {xk} is an admissible sequence for 0 E R ( I  + B)  

and we may use {hk} in (1.2). Indeed 

Ilx~§ x~ I1 _-< I lx~ , -  x~ + yk+l-  yk [[ ~< ][Xk+l § yk+l[[ § [[Xk § yk [[:< OLk+l § O~k 

SO 

2 HXk§ + hk*~(Xk*~+ Yk+l)ll --< 2 IIx~§247247247 
k = l  k = l  

- < 2 2  a k + 2  a k h k < ~ .  
k = l  k =1 

Thus {x~} is admissible. 

In the proof of Theorem 2 we showed that certain convex combinations of 

xj + y, converged to 0 if (1.2) holds, so 0 is in the closed convex hull of R (I + B)  

if there is an admissible sequence. This completes the proof. 

REMARKS. From the proof of Proposition 1 we see that if 0 ~ R (I + B) then 

there exist admissible sequences with arbitrary associated sequences {hk} 

satisfying ~ hk = ~. It is worth noting that if (1.2) holds and inf~ h~ > 0  then 

OE R ( I  + B)  for 

h~(xk + yk) = (Xk 1-- Xk + hk+,(Xk§ + yk+,))-- (Xk-, Xk) 

and the first term on the right tends to 0 by (3) (ii) and the second does by 

Theorem 1, so xk + yk ~ 0. One can also show that xk + yk --' 0 if Z ~ l  ][ z~ [[ < ~. 

3. Applications 

In this section we deduce two known general theorems on accretive sets in 

Banach space as simple consequences of our results. We note that the previously 

known proofs of these theorems were all dependent  on the existence of a 

solution to the initial value problem (1). 

We start by introducing the following conditions: 

(R~) l iminfA ~ d i s t ( R ( I + A A ) ; x - A y ) = O  V x C D ( A ) ,  y@X.  
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Note that it is sufficient for (R1) to hold only for every y in a dense subset of X in 

order for it to hold for every y E X. 

LEMMA 4. Let A be accretive and satisfy (R1). I f  P : D ( A ) C X - - - ~ X  is 

continuous, then A + P satisfies (R0.  

PROOF. If A satisfies (R 0 then for every y E X there are sequences A, ~ 0  

and y, E Ax, such that 

(3.1) A T ' ( x , + A , y , - ( x - A , y - A , P x ) ) - - - ~ O  as i--.oo. 

But 

A.'(x, + A,y, + A,ex, - (x - X,y)) = A . '(x, + LY, - (x - A,y - A,Px))+ Px, - ex. 

In order to prove that A + P satisfies (R~) it is therefore sufficient to show that 

x, ~ x as i ~ ~. f rom the accretiveness of A we have 

IIx,-ullMIIx,-u+, ,(y,-v)ll for v E A u  

and from (3.1) we then have 

l imsup ]Ix, - u [IM lim sup fix - u - A,(y + Px + v ) l l  = I Ix  - u l[ 

for all u E D ( A )  and thus x, ~ x .  

Let z E X be arbitrary. Taking P = I -  z in the previous lemma, it follows 

that Az = A + I - z satisfies condition (Rz) and hence also (R) of Section 1 and 

therefore by Theorem 3 we have: 

THEOREM (Y. Kobayashi  [3]). Let A be accretive and satisfy (R,). Then fi, 

(the closure of A )  is m-accretive. 

We conclude with the following general perturbat ion theorem. 

THEOREM (Y. Kobayashi  [3]). Let A be accretive and P: D ( A  )C X ~ X be 

continuous. I f  A + P is accretive, then it is m-accretive if and only if A is 

m -accretive. 

PROOF. Let A be m-accret ive then A is closed and satisfies (R,). Therefore,  

by L e m m a  4, A + P satisfies (R 0. Since, by the continuity of P, A + P is closed 

and by assumption it is accretive, it follows f rom the previous theorem that 

A + P is m-accretive.  If A + P is m-accret ive one has that A = (A + P)  - P is 

as well by the above. 

The last theorem is a considerable generalization of the theorem of R. Martin 
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which was stated in the introduction. Indeed Martin's theorem is obtained by 

taking A =- 0 on X. G. Webb [9] proved the above perturbation result assuming 

that A was linear m-accretive with D ( A ) =  X. Subsequently V. Barbu [1] 

generalized Webb's result to the case where A was a general m-accretive 

operator and P: X---~X was continuous. Finally Y. Kobayashi [3] proved the 

above theorem. 
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